Edexcel Maths C4

Topic Questions from Papers

Vectors

7. The line l_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$

and the line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},$$

where λ and μ are parameters.

The lines l_1 and l_2 intersect at the point B and the acute angle between l_1 and l_2 is θ .

(a) Find the coordinates of B.

(4)

(b) Find the value of $\cos \theta$, giving your answer as a simplified fraction.

(4)

The point A, which lies on l_1 , has position vector $\mathbf{a} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$. The point C, which lies on l_2 , has position vector $\mathbf{c} = 5\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. The point D is such that ABCD is a parallelogram.

(c) Show that $|\overrightarrow{AB}| = |\overrightarrow{BC}|$.

(3)

(d) Find the position vector of the point D.

(2)

6.	The	line	l_1	has	vector	equation
-----------	-----	------	-------	-----	--------	----------

$$\mathbf{r} = 8\mathbf{i} + 12\mathbf{j} + 14\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} - \mathbf{k}),$$

where λ is a parameter.

The point A has coordinates (4, 8, a), where a is a constant. The point B has coordinates (b, 13, 13), where b is a constant. Points A and B lie on the line l_1 .

(a) Find the values of a and b.

(3)

Given that the point O is the origin, and that the point P lies on l_1 such that OP is perpendicular to l_1 ,

(b) find the coordinates of P.

(5)

(c)	Hence	find	the	distance	OP,	giving	your	answer	as	a sim	plified	surd
-----	-------	------	-----	----------	-----	--------	------	--------	----	-------	---------	------

(2)

5. The point A, with coordinates (0, a, b) lies on the line l_1 , which has equation

$$\mathbf{r} = 6\mathbf{i} + 19\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}).$$

(a) Find the values of a and b.

(3)

The point P lies on l_1 and is such that OP is perpendicular to l_1 , where O is the origin.

(b) Find the position vector of point P.

(6)

Given that B has coordinates (5, 15, 1),

(c) show that the points A, P and B are collinear and find the ratio AP : PB.

(4)

Question 5 continued	blank

7.	The point A has position vector $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and the point B has position $\mathbf{b} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$, relative to an origin O.	vector
	(a) Find the position vector of the point C , with position vector \mathbf{c} , given by	
	$\mathbf{c} = \mathbf{a} + \mathbf{b}$.	
		(1)
	(b) Show that <i>OACB</i> is a rectangle, and find its exact area.	
	(b) Show that OACD is a rectangle, and find its exact area.	(6)
	The diagonals of the rectangle, AB and OC , meet at the point D .	
	(c) Write down the position vector of the point D .	
		(1)
	(d) Find the size of the angle <i>ADC</i> .	
		(6)

uestion 7 continued			

The line l_1 has equation $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

The line l_2 has equation $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$.

(a) Show that l_1 and l_2 do not meet.

(4)

The point *A* is on l_1 where $\lambda = 1$, and the point *B* is on l_2 where $\mu = 2$.

(b) Find the cosine of the acute angle between AB and l_1 .

(6)

·

10

6.	The points A and B have position vectors $2\mathbf{i} + 6\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ respectively.	
	The line l_1 passes through the points A and B .	
	(a) Find the vector \overrightarrow{AB} .	(2)
	(b) Find a vector equation for the line l_1 .	(2)
	A second line l_2 passes through the origin and is parallel to the vector $\mathbf{i} + \mathbf{k}$. The line meets the line l_2 at the point C .	
	(c) Find the acute angle between l_1 and l_2 .	(3)
	(d) Find the position vector of the point <i>C</i> .	(4)
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

Question 6 continued		bla

6. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1$$
: $\mathbf{r} = (-9\mathbf{i} + 10\mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k})$

$$l_2$$
: $\mathbf{r} = (3\mathbf{i} + \mathbf{j} + 17\mathbf{k}) + \mu(3\mathbf{i} - \mathbf{j} + 5\mathbf{k})$

where λ and μ are scalar parameters.

(a) Show that l_1 and l_2 meet and find the position vector of their point of intersection.

(6)

(b) Show that l_1 and l_2 are perpendicular to each other.

(2)

The point A has position vector $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$.

(c) Show that A lies on l_1 .

(1)

The point *B* is the image of *A* after reflection in the line l_2 .

(d) Find the position vector of B.

(3)

16

uestion 6 continued		

(3)

Leave blank

4. With respect to a fixed origin O the lines l_1 and l_2 are given by the equations

$$l_{1}: \quad \mathbf{r} = \begin{pmatrix} 11 \\ 2 \\ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix} \qquad \qquad l_{2}: \quad \mathbf{r} = \begin{pmatrix} -5 \\ 11 \\ p \end{pmatrix} + \mu \begin{pmatrix} q \\ 2 \\ 2 \end{pmatrix}$$

where λ and μ are parameters and p and q are constants. Given that l_1 and l_2 are perpendicular,

(a) show that q = -3. (2)

Given further that l_1 and l_2 intersect, find

(b) the value of p, (6)

(c) the coordinates of the point of intersection. (2)

The point A lies on l_1 and has position vector $\begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix}$. The point C lies on l_2 .

Given that a circle, with centre C, cuts the line l_1 at the points A and B,

(d) find the position vector of *B*.

Question 4 continued	

7.	Relative to a fixed origin O , the point A has position vector $(8\mathbf{i} + 13\mathbf{j} - 2\mathbf{k})$,
	the point B has position vector $(10\mathbf{i} + 14\mathbf{j} - 4\mathbf{k})$,
	and the point C has position vector $(9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k})$.

The line l passes through the points A and B.

(a) Find a vector equation for the line l.

(3)

(b) Find $|\overrightarrow{CB}|$.

(2)

(c) Find the size of the acute angle between the line segment CB and the line l, giving your answer in degrees to 1 decimal place.

(3)

(d) Find the shortest distance from the point C to the line l.

(3)

The point *X* lies on *l*. Given that the vector \overrightarrow{CX} is perpendicular to *l*,

(e) find the area of the triangle CXB, giving your answer to 3 significant figures.

(3)

	Leave blank
Question 7 continued	Diank

4. The line l_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-1\\3 \end{pmatrix}$$

and the line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$

where λ and μ are parameters.

The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ .

(a) Write down the coordinates of A.

(1)

(b) Find the value of $\cos \theta$.

(3)

The point *X* lies on l_1 where $\lambda = 4$.

(c) Find the coordinates of X.

(1)

(d) Find the vector \overrightarrow{AX} .

(2)

(e) Hence, or otherwise, show that $|\overrightarrow{AX}| = 4\sqrt{26}$.

(2)

The point Y lies on l_2 . Given that the vector \overrightarrow{YX} is perpendicular to l_1 ,

(f) find the length of AY, giving your answer to 3 significant figures.

(3)

	Leave
Question 4 continued	blank
Question 4 continued	

7. The line l_1 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, where λ is a scalar parameter.

The line l_2 has equation $\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$, where μ is a scalar parameter.

Given that l_1 and l_2 meet at the point C, find

(a) the coordinates of C.

(3)

The point A is the point on l_1 where $\lambda=0$ and the point B is the point on l_2 where $\mu=-1$.

(b) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places.

(4)

(c) Hence, or otherwise, find the area of the triangle ABC.

(5)

Question 7 continued	blank

Leave
blank

4.	Relative to a fixed origin O , the point A has position vector $\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and the point B position vector $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. The points A and B lie on a straight line I .	has
	(a) Find \overrightarrow{AB} .	(2)
	(b) Find a vector equation of <i>l</i> .	(2)
	The point C has position vector $2\mathbf{i} + p\mathbf{j} - 4\mathbf{k}$ with respect to O, where p is a constant. Given that AC is perpendicular to l , find	
	(c) the value of p ,	(4)
	(d) the distance AC .	(2)
		_

Question 4 continued	blank

(1)

(4)

Leave blank

6. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_{1}: \quad \mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \qquad l_{2}: \quad \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$

where λ and μ are scalar parameters.

- (a) Show that l_1 and l_2 meet and find the position vector of their point of intersection A.
- (b) Find, to the nearest 0.1° , the acute angle between l_1 and l_2 .

The point *B* has position vector $\begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$.

(c) Show that B lies on l_1 .

(d) Find the shortest distance from B to the line l_2 , giving your answer to 3 significant figures.

Question 6 continued	blank

7. Relative to a fixed origin O, the point A has position vector $(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})$, the point B has position vector $(5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k})$, and the point D has position vector $(-\mathbf{i} + \mathbf{j} + 4\mathbf{k})$.

The line l passes through the points A and B.

(a) Find the vector \overrightarrow{AB} .

(2)

(b) Find a vector equation for the line l.

(2)

(c) Show that the size of the angle BAD is 109° , to the nearest degree.

(4)

The points A, B and D, together with a point C, are the vertices of the parallelogram ABCD, where $\overrightarrow{AB} = \overrightarrow{DC}$.

(d) Find the position vector of C.

(2)

(e) Find the area of the parallelogram *ABCD*, giving your answer to 3 significant figures.

(3)

(f) Find the shortest distance from the point D to the line l, giving your answer to 3 significant figures.

(2)

Question 7 continued	blank
Question / Continued	

8. Relative to a fixed origin O, the point A has position vector $(10\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$, and the point B has position vector $(8\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$.

The line l passes through the points A and B.

(a) Find the vector \overrightarrow{AB} .

(2)

(b) Find a vector equation for the line *l*.

(2)

The point C has position vector $(3\mathbf{i} + 12\mathbf{j} + 3\mathbf{k})$.

The point P lies on l. Given that the vector \overrightarrow{CP} is perpendicular to l,

(c) find the position vector of the point P.

(6)

Question 8 continued	Leave blank
	Q8
(Total 10 ma	
TOTAL FOR PAPER: 75 MA	KKS
END	

7. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \mathbf{r} = (9\mathbf{i} + 13\mathbf{j} - 3\mathbf{k}) + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$$

$$l_2$$
: $\mathbf{r} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k})$

where λ and μ are scalar parameters.

(a) Given that l_1 and l_2 meet, find the position vector of their point of intersection.

(5)

(b) Find the acute angle between l_1 and l_2 , giving your answer in degrees to 1 decimal place.

(3)

Given that the point A has position vector $4\mathbf{i} + 16\mathbf{j} - 3\mathbf{k}$ and that the point P lies on l_1 such that AP is perpendicular to l_1 ,

(c) find the exact coordinates of P.

(6)

uestion 7 continued	l t

6. Relative to a fixed origin O, the point A has position vector $21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k}$ and the point B has position vector $25\mathbf{i} - 14\mathbf{j} + 18\mathbf{k}$.

The line *l* has vector equation

$$\mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$$

where a, b and c are constants and λ is a parameter.

Given that the point A lies on the line l,

(a) find the value of a.

(3)

Given also that the vector \overrightarrow{AB} is perpendicular to l,

(b) find the values of b and c,

(5)

(c) find the distance AB.

(2)

The image of the point B after reflection in the line l is the point B'.

(d) Find the position vector of the point B'.

(2)

nestion 6 continued		
		_
		-
		_
		_
		_
		-
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		-
		_

8. With respect to a fixed origin O, the line l has equation

$$\mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \text{ where } \lambda \text{ is a scalar parameter.}$$

The point A lies on l and has coordinates (3, -2, 6).

The point P has position vector $(-p \mathbf{i} + 2p \mathbf{k})$ relative to O, where p is a constant.

Given that vector \overrightarrow{PA} is perpendicular to l,

(a) find the value of p.

(4)

Given also that B is a point on l such that $\angle BPA = 45^{\circ}$,

(b) find the coordinates of the two possible positions of B.

(5)

Question 8 continued	Leave blank
Question & continued	
	Q8
/TF / 10 1 1	
(Total 9 marks) TOTAL FOR PAPER: 75 MARKS	
END	

Candidates sitting C4 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Integration (+ constant)

$$f(x) \qquad \int f(x) dx$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan x \qquad \ln|\sec x|$$

$$\cot x \qquad \ln|\sin x|$$

$$\csc x \qquad -\ln|\csc x + \cot x|, \quad \ln|\tan(\frac{1}{2}x)|$$

$$\sec x \qquad \ln|\sec x + \tan x|, \quad \ln|\tan(\frac{1}{2}x + \frac{1}{4}\pi)|$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx
$$k \sec^2 kx$$

sec x $\sec x \tan x$
cot x $-\csc^2 x$
cosec x $-\csc x \cot x$

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$